viernes, 16 de enero de 2009



ESCUELA DE COMUNICACIONES Y ELECTRÓNICA DEL EJÉRCITO DE GUATEMALA.



La Escuela de Comunicaciones y Electrónica del Ejército de Guatemala, imparte educación basica orientada a la electrónica y telecomunicaciones, asi como los bachilleratos en electrónica y telecomunicaciones, todos los estudios estan avalados por el Ministerio de Educación y respaldados por el Ministerio de la Defensa, quien provee la parte de educacion militar, aportando a los jovenes guatemaltecos, educación con valores y principios, que les permitiran desempeñarse en la sociedad como personas capaces, honradas y prestas a servir en casos de que la nación lo requiera. Todos los padres de familia que deseen que sus hijos reciban una educación cientifica, integral y con una formación basada en principios y valores, pueden inscribir a sus hijos para que estudien los grados de 1ro. a 3ro. basico y las carreras de bachillerato en electrónica o bachillerato en telecomunicaciones, carreras con mucha demanda hoy en dia por el desarrollo tecnológico que se presenta actualmente en nuestro país.

jueves, 15 de enero de 2009



¿Qué es una antena?


La definición formal de una antena es un dispositivo que sirve para transmitir y recibir ondas de radio. Convierte la onda guiada por la línea de transmisión (el cable o guía de onda) en ondas electromagnéticas que se pueden transmitir por el espacio libre.
En realidad una antena es un trozo de material conductor al cual se le aplica una señal y esta es radiada por el espacio libre.
Las antenas deben de dotar a la onda radiada con un aspecto de dirección. Es decir, deben acentuar un solo aspecto de dirección y anular o mermar los demás. Esto es necesario ya que solo nos interesa radiar hacia una dirección determinada.
Esto se puede explicar con un ejemplo, hablando de las antenas que llevan los satélites. Estas acentúan mucho la dirección hacia la tierra y anulan la de sentido contrario, puesto que lo que se quiere es comunicarse con la tierra y no mandar señales hacia el espacio.
Las antenas también deben dotar a la onda radiada de una polarización. La polarización de una onda es la figura geométrica descrita, al transcurrir el tiempo, por el extremo del vector del campo eléctrico en un punto fijo del espacio en el plano perpendicular a la dirección de propagación.
Para todas las ondas, esa figura es normalmente una elipse, pero hay dos casos particulares de interés y son cuando la figura trazada es un segmento, denominándose linealmente polarizada, y cuando la figura trazada es un círculo, denominándose circularmente polarizada.
Una onda está polarizada circularmente o elípticamente a derechas si un observador viese a esa onda alejarse, y además viese girar al campo en el sentido de las agujas de un reloj. Lógicamente, si lo viese girar en sentido contrario, sería una onda polarizada circularmente o elípticamente a izquierdas.

Distribución De Corriente En Una Antena
Una antena, al ser un elemento de un circuito, tendrá una distribución de corrientes sobre ella misma. Esta distribución dependerá de la longitud que tenga la antena y del punto de alimentación de la misma.
Una onda estacionaria es una onda que se crea cuando una señal se está propagando por un medio de transmisión y es reflejada por culpa de una mala adaptación o por culpa de un final de línea.
Supongamos primero que tenemos una línea acabada en circuito abierto y alimentada en uno de sus extremos.

En el momento de alimentar a esta línea de transmisión con una señal senoidal, se crea una onda que se propaga por la línea.
Esta señal se irá repitiendo cada longitud de onda landa (una longitud de onda y no media longitud de onda) ya que es una señal senoidal y es periódica. Esto provoca que ahora tengamos una distribución de corrientes que no es constante y que varía en función de la longitud de onda landa.
En la siguiente figura podemos ver una representación gráfica de como quedaría una distribución de corrientes en la línea que estamos tratando.

Una vez que la onda llega al final de la línea, esta es reflejada al no poder continuar su camino, volviendo hacia el generador. Esta onda reflejada tiene un desfase de 90º respecto de la onda incidente, por lo que al sumarse con la onda incidente, tendremos puntos en donde la suma de un máximo y en donde de un mínimo. Esta suma de las dos ondas es la onda estacionaria que estamos buscando.
Si en vez de estar acabada la línea en circuito abierto, estuviera acabada en corto circuito, también se reflejaría la onda, pero en vez de estar desfasada 90º, estaría desfasada 180º. También se sumaría a la onda incidente y lógicamente también creará la onda estacionaria.

En la figura anterior observamos como quedan la onda incidente, la reflejada y la estacionaria en la línea de transmisión que estamos tratando.
Esta es la onda estacionaria que se crea en la línea. Para entenderlo mejor se suele representar el módulo de la intensidad, que sería lo que mediría un medidor de corriente de RF, y la tensión en la misma línea.

Una cosa que no se ha comentado, pero que es muy importante, es la posición de los máximos y de los mínimos de una onda estacionaria.
Al estar acabada la línea en un circuito abierto, en ese punto no podrá desplazarse la corriente, luego el módulo de la corriente en el extremo de la línea tendrá un mínimo. Por la misma razón, la tensión en ese punto tendrá un máximo, ya que hay máxima concentración de energía.
Al ir variando la tensión y la intensidad en la línea, la impedancia también irá variando. Este detalle es importante puesto que una vez que tengamos diseñada nuestra antena, dependiendo del punto en el que la alimentemos, tendremos distinta impedancia. Así por ejemplo, si tenemos un cable de 50 ohmios para alimentar una antena, nos interesará alimentarla por un punto que presente impedancia cercana a 50 ohmios para tener las mínimas perdidas por desacoplo de impedancias.
Como podemos ver en la imagen anterior, el módulo de la corriente en la línea se repite cada media longitud de onda, que es la distancia que se utiliza para diseñar antenas. Pero, ¿por qué se utiliza esa longitud y no otra?.
En realidad hay muchos tipos de antenas y cada una utiliza una parte distinta de la longitud de onda, así que dependiendo de la aplicación que queramos, del tipo de antena que queramos utilizar y de más factores (espacio, ... ) utilizaremos una medida u otra.
Vamos a ver que ocurre cuando modificamos un poco nuestra línea de transmisión que estamos tratando. Vamos a suponer que alimentamos en un punto cualquiera y que tenemos creada una onda estacionaria en ella.
En la siguiente figura tenemos representado de forma esquemática como quedará esa onda en nuestra línea, en donde se indica con flechas el sentido de las corrientes.

Sin meterse en cuestiones físicas, si una corriente circula por un conductor, creará un campo eléctrico y magnético en sus alrededores. Luego nuestra corriente creará un campo eléctrico y magnético, pero como supondremos que la distancia entre los dos conductores que forman nuestra línea (S) es pequeña, no se creará una onda que se propaga, puesto que la contribución que presenta el conductor superior se anulará con la que presenta el conductor inferior.

Pero si separamos en un punto los dos conductores, los campos que crean las corrientes ya no se anularán entre si, si no que se creará un campo eléctrico y magnético que formará una onda que se podrá propagar por el espacio.
Según esto, dependiendo del punto desde el que separemos el conductor, tendremos una longitud en los elementos radiantes (H) variable. Al variar esta longitud, la distribución de corriente variará, y lógicamente la onda que se creará y se propagará.
Hay que seguir observando que en los extremos seguimos teniendo un mínimo de corriente y que continúa repitiéndose cada media longitud de onda. Luego ahora podemos ver de forma gráfica, que si suponemos que nuestra antena son solo los elementos radiantes y que el punto en el que los hemos separado es el punto de alimentación de la antena, el módulo de la intensidad en el punto de alimentación varía y lógicamente, también varía la impedancia que presenta la antena.
Veamos como se distribuye la corriente en función de la longitud de la antena (H) y su diagrama de radiación en la siguiente tabla. En ella se indica el ancho de haz a -3 dB, la directividad (D), la resistencia de radiación en el punto de máxima corriente (Rrm) y la resistencia en el punto de alimentación de la antena (Rre).

Como podemos ver, no por tener una antena más larga logramos radiar mejor, lo único que conseguimos es variar el diagrama de radiación y la impedancia que presenta.
En esta tabla vemos que una antena vertical de 5/8 longitudes de onda es una de las mejores, de las representadas, para hacer contactos a larga distancia (DX) puesto que es la que tiene el lóbulo de radiación más bajo y es la que presenta la directividad más pronunciada. Esta directividad nos indica que presenta una mayor ganancia en la dirección de propagación que se observa en el diagrama de radiación.